bob体育官网,bob体育最新版下载地址

English Version
bob体育官网-bob体育最新版下载地址

团队名称

CME中心

团队介绍

1.科研方向

非接触式光学监测仪器制造(光电探测技术、精密测量技术、光路设计、电路设计等)、半导体材料的生长与应用基础研究(热电材料、电池等)

(1)非接触式在线监测设备制造

    本团队长期从事辐射测温、航空发动机涡轮叶片监测、红外光谱仪器及技术、光学设计、光机系统设计、电路及数据采集等研究,在光学仪器的设计、制造、应用,辐射测温器件与系统,微结构光学与薄膜光学,系统控制及信号处理以及精密机械设计与加工等领域具有较强的理论及技术基础,积累了丰富的研发经验本团队。

    1)第三代半导体在线监测设备

  

       无论是氮化物基材料的LED还是功率电子器件,它们的性能优劣高度依对外延生长过程的品质控制。在外延膜生长过程中温度是MOCVD生长过程中极其关键的参数,直接影响化学反应的过程,不同层的膜化学反应不同,需要不同的温度点,在这个沉积过程中,外延薄膜的生长速率以及化学反应的效率都受制于温度的精确控制。

  本团队在科技部重大科技专项、国家自然基金委和四川省科技厅的资助下,开展了复杂环境下的辐射测温研究,利用光学非接触测温的方法研究了半导体材料生长在高温、复杂气氛、高速旋转的环境下的多参数的测量方法。在理论和实验研究的基础上,将此成果应用于第三代半导体外延生长设备上,研制第三代半导体材料生长的温度在线监测设备。采用该设备对在充满多种反应气体的腔体内部以1000~1800转/分钟的速度旋转的多达45片III族氮化物晶圆的温度、薄膜表面反射率、翘曲度以及薄膜生长速率等关键技术参数进行实时测量。该研究成果“高精度多参数第三代半导体外延生长在线监测关键技术”获得了2016年度四川省科技进步技术发明类一等奖。


    2)航空发动机涡轮叶片温度测量仪器

  

  近年来,随着航空发动机向高推重比、高涵道比、高涡轮进口温度方向发展,对发动机的动力要求越来越大针对我国航空发动机发展的迫切需求以及发动机涡轮叶片温度监测仪器的国内外现状,在国家自然科学基金的支持下,本团队开展了高精度可变焦航空发动机涡轮叶片温度监测仪器的研制工作,重点解决航空发动机涡轮叶片温度在线监测中存在的发射率干扰,燃烧室复杂气体环境干扰等关键科学问题和发动机涡轮叶片形状复杂、高速旋转,难以定位,以及高温下测量等重要技术问题。为我国航空发动机涡轮叶片的研究,包括材料选择与优化、结构力学、动力学研究等提供第一手资料,进而为突破我国在高性能、 高可靠性航空发动机研制中的技术瓶颈提供重要的理论和实验数据。

    团队与中国科学院长春光学精密机械与物理研究所、中国航发四川燃气涡轮研究院等建立了良好合作关系,针对本仪器的研制专门成立了课题小组,各单位优势互补,攻克难题。


(2)能源转换材料与器件

     1)热电材料的研发

    热电材料是一种能将热能和电能相互转换的功能材料,1823年发现的塞贝克效应和1834年发现的帕尔帖效应为热电能量转换器和热电制冷的应用提供了理论依据。随着空间探索兴趣的增加、医用物理学的进展以及在地球难于日益增加的资源考察与探索活动,需要开发一类能够自身供能且无需照看的电源系统,热电发电对这些应用尤其合适。

   对于遥远的太空探测器来说,放射性同位素供热的热电发电器是唯一的供电系统。已被成功的应用于美国宇航局发射的“旅行者一号”和“伽利略火星探测器”等宇航器上。利用自然界温差和工业废热均可用于热电发电,它能利用自然界存在的非污染能源,具有良好的综合社会效益。利用帕尔帖效应制成的热电制冷机具有机械压缩制冷机难以媲美的优点:尺寸小、质量轻、无任何机械转动部分,工作无噪声,无液态或气态介质,因此不存在污染环境的问题,可实现精确控温,响应速度快,器件使用寿命长。还可为超导材料的使用提供低温环境。另外利用热电材料制备的微型元件用于制备微型电源、微区冷却、光通信激光二极管和红外线传感器的调温系统,大大拓展了热电材料的应用领域。

   因此,热电材料是一种有着广泛应用前景的材料,在环境污染和能源危机日益严重的今天,进行新型热电材料的研究具有很强的现实意义。

    2)储能电极材料的研究

    电化学是研究两类导体形成的带电界面现象及其上所发生的变化的科学。如今已形成了合成电化学、量子电化学、半导体电化学、有机导体电化学、光谱电化学、生物电化学等多个分支。电化学在化工、冶金、机械、电子、航空、航天、轻工、仪表、医学、材料、能源、金属腐蚀与防护、环境科学等科技领域获得了广泛的应用。当前世界上十分关注的研究课题, 如能源、材料、环境保护、生命科学等等都与电化学以各种各样的方式关联在一起。

    本课题组主要研究新型储能材料,例如常见的超级电容器的电极材料的制备和高能量密度锂电正极材料的制备。对常见电极材料改性,形貌调控,容量衰减机理的探索,及其生长机理的研究。形成了一套行之有效的研究方法,同时进一步改善工艺,利于材料大规模的制备。


2.代表性成果

(1)代表性的高水平论文

[1]Wang C*, Tian H, Jiang J, et al. Facile Synthesis of Different Morphologies of Cu2SnS3 for High-Performance Supercapacitors[J]. ACS Applied Materials & Interfaces, 2017.

[2]Chao Wang*, Ting Zhou et.al Multicolor tunable luminescence based on Tb3+/Eu3+ doping through a facile hydrothermal route. ACS Appl. Mater. Interfaces, 2017.

[3]Guoqiang Zou, Chao Wang,Xiaobo Ji* et.al.Controllable Interlayer Spacing of Sulfur-Doped GraphiticCarbon Nanosheets for Fast Sodium-Ion Batteries. small 2017.

[4]Zhengming Yang,# Xue Ning,# Chao Wang,Jie Xiong* et.al,Universal laser fabrication of deepUV plasmonic metal@carbon core@shell nanoparticles,Advanced Functional Materials, 2017.

[5]Zhaodong Huang,Chao Wang,Xiaobo Ji* et.al. LayerTunable Phosphorene Modulated by the CationInsertion Rate as a Sodium-Storage Anode. Adv. Mater. 2017

[6]Shen Xing,Tianyu Kong, Junsheng Yu*,and Chao Wang. Realization of Performance Enhancement in TernaryPolymer Solar Cells by Broad Absorption, EfficientEnergy Transfer, and Balanced ChargeCarrier.IEEE Journal of Photovoltaics, 2017.

[7]Peng Ge, Hongshuai Hou, Xiaoqing Qiu*, Qing Zeng, Chao Wang*, and Xiaobo Ji. High-rate sodium ion anodes assisted by N-doped carbon sheets.Sustainable Energy Fuels, 2017.

[8]Miao Yu,Ting Zhou, Chao Wang*, Haibo Zeng*and Jie Xiong*. Universal liquidphase laser fabrication of various nanometals encapsulated by ultrathin carbon shells for deepUV plasmonics. Nanoscale, 2017.

[9]Xiaojiao,Chao Wang*,Daojiang Gao* et.al.Fabrication, microstructures, luminescent and magnetic properties of LiFe(WO4)2 microcrystals.Journal of Materials Science: Materials in Electronics, 2017.

[10]Chao Wang*, Yide Chen,Ping Yang*et.al.Improved thermoelectric properties of SnS synthesized by chemical precipitation.RSC Adv., 2017.

[11]Q.Zeng,D.J. Gao*, C. Wang*. Highpurity helical carbon nanotubes with enhanced electrochemical properties for supercapacitors. RSC Adv.2017.

[12]S. X. Wu,C. Wang*et.al. Chemical Precipitation Synthesis and Thermoelcetric Properties of Copper Sulfide. Journal of Electronic Materials, 46, 2017.

[13]B. Yuan,C. Wang*, Q. Y. Zhang* et.al. Effects of Sb Substitution by Sn on the ThermoelectricProperties of ZrCoSb. Journal of Electronic Materials, 2016.

[14]J. Shuai, H.Y. Geng,C. Wang,ChingWu Chu*, Z.F. Ren. Higher thermoelectric performance of Zintl phases (Eu0.5Yb0.5)1-xCaxMg2Bi2 by band engineering and strain fluctuation. PNAS, 2016.

[15]Tianyu Lei, Chao Wang,Jie Xiong et.al,Multi-functional layered WS2 Nanosheets for Enhancing Lithium-Sulfur Battery Performance.Advanced Energy Materials, 2016.

[16]Y. Yang*, Wei Shi*, C. Wang* et.al, Electrochemical Exfoliation of Graphite into Nitrogen-doped Graphene in Glycine Solution and its Energy Storage Properties. Electrochimica Acta, 2016.

[17]Jun Chen,Chao Wang,Xiaobo Ji* et.al, Black Anatase Titania with Ultrafast SodiumStorage Performances Stimulated by Oxygen Vacancies. ACS Appl. Mate.Interfaces, 2016.

[18]Guoqiang Zou, Jun Chen, Yan Zhang, Chao Wang, Zhaodong Huang, Simin Li, Hanxiao Liao, Jufeng Wang, Xiaobo Ji, Carbon-coated rutile titanium dioxide derived from titaniummetal organic framework with enhanced sodium storage behavior. Journal of Power Sources, 2016.

[19]Zhou. AJ ,Wang. C,P, Mueller. E et.al, Impact of the film thickness and substrate on the thermopower measurement of thermoelectric films by the potential-Seebeck microprobe (PSM). Applied Thermal Engineering, 2016.

[20]Tianyu Kong,Chao Wang et.al, Improving the Efficiency of Bulk Heterojunction Polymer Solar Cells Via Binary-Solvent Treatment. IEEE Journal of Photovoltaics,2017.

[21]Zihang Liu,Chao Wang, Zhifeng Ren et.al, Understanding and manipulating the intrinsic point defect in α-MgAgSb for higher thermoelectric performance. Journal of Materials Chemistry A,2016.

[22]Huili Liu,Chao Wang,Lidong Chen et.al, Reduction of thermal conductivity by low energy multiEinstein optic modes. Journal of Materiomics,2016.

[23]YANG Ping,WANG Chao* et.al Effect of the SPDT on Surface Temperature and Stress of KDP Crystal. Journal of Synthetic Crystals, 45(4):896-900, 2016.

[25]WANG Chao, ZHANG Ze.zhan et.al InSitu Monitoring Technology for Growth of III Nitrides by MetalOrganic Chemical Vapor Deposition. Journal of University of Electronic Science and Technology of China,2016.

[26]WANG Chao*, ZHANG Rui1 et.al Research Progress of New Thermoelectric Materials, 2017.

[27]X. Jian,C. Wang* et.al, Enhancement in photoluminescence performance of carbon-decorated T-ZnO, Nanotechnology, 2015.

[28]L. Yin, C. Wang* et.al, Luminescent properties of a novel Al10O3N8:Eu2+phosphor by a mechanochemical activation route, Optical Materials, 2015.

[29]X. Yang, C. Wang,X. Ji* et.al, Anatase TiO2 nanocubes for fast and durable sodium ion battery anodes, Journal of Materials Chemistry A,2015.

[30]Yu Cao,Chao Wang*,Wanli Zhang* et.al. Synthesis of highpurity CuO nanoleaves and analysis of their ethanol gas sensing properties. RSC Advances,2015.

[31]C. Wang*,J. Jiang et.al,Influence of two-tier structuring on the performance of black silicon-based MSM photodetectors,J. Mater. Sci.: MaterElectron,2014.

[32]B. Sun*, L. Zhao*, C. Wang*, Tunable Fano Resonance in E?Shape Plasmonic Nanocavities, Journal of Physical Chemistry C, 2014.

[33]L. Yin, G. Chen, C. Wang* et.al Tunable luminescence of CeAl11O18based phosphors by replacement of (AlO)(+) by (SiN)(+) and co-doping with Eu, ECS Journal of Solid State Science and Technology,2014.

[34]X. Jian, Y. Cao, C. Wang* et.al High-purity Cu nanocrystal synthesis by a dynamic decomposition method, Nanoscale Research Letters,2014.

[35]X. Jian, C. Wang*,Controllable preparation of Ni nanoparticles for catalysis of coiled carbon fibers growth, Nanoscale Research Letters,2014.

[36]S.G.Wang*,C.Wang et.al,Interface characterization of epitaxial Fe/MgO/Fe magnetic tunnel junctions, Journal ofNanoscience and Nanotechnology,2012.

[37]C.Wang*,A.Kohn,S.G.Wang et.al,Interlayer diffusion studies of a Laves phase exchange spring superlattice, Journal of Physics-Condensed Matter,2011.

[38]C.Wang,A.Kohn*,R.C.C. Ward* et.al,Structural characterization of interfaces in epitaxial Fe/MgO/Fe magnetic tunnel junctions by transmission electron microscopy, Physical ReviewB,2010.

[39]G.X.Du,S.G.Wang*,C.Wang et.al,Spindependent tunneling spectroscopy for interface characterization of epitaxial Fe/MgO/Fe magnetic tunnel junctions,Physical Review B,2010.

[40]C.R.Seabourne*,C.Wang,et.al,Analysis ofcomputational EELS modelling results for MgO-based Systems,Ultramicroscopy,2010.

[41]R. Fan*,C. Wang et.al, The influence of interfacial roughness on the coherence of structure and magnetic coupling across barriers in Fe/MgO multilayers, Journal of Physics-Condensed Matter

[42]S.G.Wang*,A.Kohn,C.Wang et.al.,Exchangebias in epitaxial Fe/Ir0.2Mn0.8 bilayers grown on MgO (001), Journal of Physics D-Applied Physics,2009.

[43]Q.L.Ma,S.G.Wang*,C.Wang et.al,Temperature dependence of resistance in epitaxial Fe/MgO/Fe magnetic tunnel junctions, Applied Physics Letters,2009.

[44]S.G.Wang*,C.Wang et.al,Structural characterization and temperature dependence of tunnel magnetoresistance in epitaxial Fe/MgO/Fe junctions, IEEE Transactions on Magnetics,2008.

[45]S.G.Wang*,C.Wang et.al,Temperature dependence of giant tunnel magnetoresistance in epitaxial Fe/MgO/Femagnetic tunnel junctions,Physics Review B,78/18/180411,2008.

[46]A.Kohn*,C.Wang,S.G.Wang,R.C.C.Ward,Magnetization reversal processes in epitaxial Co/Fe bi-layers grown on MgO(001), Journal of Applied Physics,2008.

[47]C.Wang*,S.G.Wang et.al,Transmission ElectronMicroscopy study of the Fe(001)|MgO(001) Interface for Magnetic Tunnel Junctions,IEEE Transactions on Magnetics,2007.

[48]S.G.Wang*,C.Wang et.al,Structural and magnetic studies of Co layer in epitaxial grown Fe/Co bi-layers,J. Appl. Phys, 2007.

[49]S.G.Wang*,C.Wang et.al,Evidence for FeO formation at the Fe/MgO interface in epitaxial TMR structure by x-ray photoelectron spectroscopy, Journal of Magnetism and Magnetic Materials,2007.

[50]Y.Z.Huang*,S.G.Wang,C.Wanget.al,Selforganization of nanoneedles in Fe/GaAs (001) epitaxial thin film, Applied Physics Letters,2006.

[51]C.Wang*,D.M.Zhuang et.al,IV characteristics of tantalum oxide film and the effect of defects on its electrical properties,ThinSolid Films,2004.

[52]Wang Chao et.al Growth of Tantalum Pentoxide Films and Its Current Voltage Characteristics, Vacuum Scienceand Technology(China),2003.

[53]WANG Chao*, ZHUANGDaming, IV Characteristics of high dielectric constant tantalum oxide films, Chinese Journal of Materials Research,2003.


(2)其他代表性成果

王超,曾青,梁莹林,陈磊,杨萍,姜晶,简贤,唐辉,一种太赫兹波段离轴三反射镜系统及其装调方法,中国,ZL201410690280.3,2016-12-07

王超,简贤,王飞,唐辉,尹良君,梁莹林,栾春红,姜晶,伍思昕,一种基于热分解法制备多孔铁粉的方法,中国,ZL 201410337735.3,2016-08-17

王超,唐辉,一种基于等离子体的钢铁制品除锈抛光方法,中国,ZL 201310467235.7,2016-03-23

王超,唐辉,徐豹,一种镍氢电池镍电极表面制备氧化钛涂层的方法,中国,ZL201310690581.1,2016-02-10

王超,唐辉,徐豹,一种镍电极表面制备三氧化铝涂层的方法,中国,ZL201310687991.0,2015-10-21

王超,唐辉,徐豹,一种镍电极表面制备三氧化铝和氧化镍陶瓷涂层的方法,中国,ZL201310689993.3,2015-08-26

王超,陈磊,伍思昕,一种薄膜外延生长在线实时表征装置,中国,ZL201310606556.0,2015-08-26

王超,尹良君,陈国璋,一种稀土掺杂氮化铝基蓝色荧光粉的制备方法,中国,ZL201310473558.7,2015-06-24

王超,陈国璋,尹良君,一种超细、高纯γ-AlON透明陶瓷粉末的制备方法,中国,ZL201310472981.5,2014-12-24

王超,尹良君,陈国璋,一种蓝光紫外连续可调的铝酸盐荧光粉及其制备方法,中国,ZL201310472985.3,2014-08-13

简贤,王超,唐辉,尹良君,曹禹,伍思昕,氧化铜纳米材料的制备方法,中国,ZL201410257872.6,2016-04-20

唐辉,王超,简贤,陈磊,徐豹,一种钛酸镁粉体的合成方法,中国,ZL201410050422.X,2016-01-06

唐辉,王超,徐豹,陈磊,一种铅板栅表面原位生长三氧化铝和氧化铅陶瓷涂层的方法,中国,ZL201310689711.X,2016-01-20

唐辉,王超,简贤,徐豹,陈磊,一种在铅合金表面制备氧化钛陶瓷涂层的方法,中国,ZL201310687935.7,2016-01-06

尹良君,王超,陈国璋,一种高纯、高亮度AlN:Eu2+蓝色荧光粉的制备方法,中国,ZL201310539952.6,2014-12-24

尹良君,陈国璋,王超,董俊涛,简贤,栾春红,徐豹,Eu2+掺杂Y4Si2O7N2蓝色荧光粉及制备方法,中国,ZL 201410605722.X,2016-05-18

姜晶,唐辉,王超,徐豹,陈磊,一种在铅合金表面生长三氧化铝涂层的方法,中国,ZL201310690598.7,2016-04-06

王润顺,王超,郑莲晃,去除光刻膜的技术,中国,ZL200510030309.6,2009-11-11

Wang,Runshun,Chao Wang, and Lien Huang Cheng ,Techniques for removal of photolithographic film,美国,11/243, 883,2009-06-21

张弓,庄大明,付恩刚,方玲,王超,赵方红,绒面氧化锌透明导电薄膜及其制备方法,中国,ZL03137254.6,2006-08-30

庄大明,方晓东,张弓,窦伟,王超,肖昱,付恩刚,七层膜结构环保节能玻璃,中国,ZL01268177.6,2003-05-14

尹良君,董俊韬,简贤,张晨贵,陈国璋,王超,栾春红,一种碳包覆的BAM:Eu2+蓝色荧光粉及其制备方法,中国,ZL201410608399.1,2016-03-30



团队负责人

团队成员